MIPS R3000 Instruction Set Summary

MIPS Operands

	Name
	Example
	Comments

	32 registers
	$0, $1, $2,..., $31
	Fast location for data. In MIPS, data must be in registers to perform arithmetic. MIPS register $0 always equal 0. Register $1 is reserved for the assembler to handle pseudo instructions and large constants

	230 memory words
	Memory[0],
Memory[4],...,
Memory[4293967292]
	Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential words differ by 4. Memory holds data structures, such as arrays, and spilled registers, such as those saved on procedure calls

MIPS Assembler Instructions

	Category
	Instruction
	Example
	Meaning
	Comments

	Arithmetic
	add
	add $1,$2,$3
	$1 = $2 + $3
	3 operands; exception possible

	
	subtract
	sub $1,$2,$3
	$1 = $2 - $3
	3 operands; exception possible

	
	add immediate
	addi $1,$2,100
	$1 = $2 + 100
	+ constant; exception possible

	
	add unsigned
	addu $1,$2,$3
	$1 = $2 + $3
	3 operands; exception possible

	
	subtract unsigned
	subi $1,$2,$3
	$1 = $2 - $3
	3 operands; exception possible

	
	add immediate unsigned
	addi $1,$2,100
	$1 = $2 + 100
	+ constant; exception possible

	
	Move from coprocessor register
	mfc0 $1,$epc
	$1 = $epc
	Used to get of Exception PC

	Logical
	and
	and $1,$2,$3
	$1 = $2 & $3
	3 register operands; Logical AND

	
	or
	or $1,$2,$3
	$1 = $2 | $3
	3 register operands; Logical OR

	
	and immediate
	and $1,$2,100
	$1 = $2 & 100
	Logical AND register, constant

	
	or immediate
	or $1,$2,100
	$1 = $2 | 100
	Logical OR register, constant

	
	shift left logical
	sll $1,$2,10
	$1 = $2 << 10
	Shift left by constant

	
	shift right logical
	srl $1,$2,10
	$1 = $2 >> 10
	Shift right by constant

	Data transfer
	load word
	lw $1,(100)$2
	$1 = Memory[$2+100]
	Data from memory to register

	
	store word
	sw $1,(100)$2
	Memory[$2+100] = $1
	Data from memory to register

	
	load upper immediate
	lui $1,100
	$1 = 100 * 216
	Load constant in upper 16bits

	Conditional branch
	branch on equal
	beq $1,$2,100
	if ($1 == $2) go to PC+4+100
	Equal test; PC relative branch

	
	branch on not equal
	bne $1,$2,100
	if ($1 != $2) go to PC+4+100
	Not equal test; PC relative

	
	set on less than
	slt $1,$2,$3
	if ($2 < $3) $1 = 1; else $1 = 0
	Compare less than; 2`s complement

	
	set less than immediate
	slti $1,$2,100
	if ($2 < 100) $1 = 1; else $1 = 0
	Compare < constant; 2`s complement

	
	set less than unsigned
	sltu $1,$2,$3
	if ($2 < $3) $1 = 1; else $1 = 0
	Compare less than; natural number

	
	set less than immediate unsigned
	sltiu $1,$2,100
	if ($2 < 100) $1 = 1; else $1 = 0
	Compare constant; natural number

	Unconditional jump
	jump
	j 10000
	goto 10000
	Jump to target address

	
	jump register
	j $31
	goto $31
	For switch, procedure return

	
	jump and link
	jal 10000
	$31 = PC + 4;go to 10000
	For procedure call

MIPS Floating-Point Operands

	Name
	Example
	Comments

	32 floating-point registers
	$f0, $f1, $f2,..., $f31
	MIPS floating point register are used in pairs for double precision numbers. Odd numbered registers cannot be used for arithemetic or branch, just for data transfer of the right "half" of double precision register pairs.

	230 memory words
	Memory[0],
Memory[4],...,
Memory[4293967292]
	Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential words differ by 4. Memory holds data structures, such as arrays, and spilled registers, such as those saved on procedure calls

MIPS Floating-Point Instructions

	Category
	Instruction
	Example
	Meaning
	Comments

	Arithmetic
	FP add single
	add.s $f2,$f4,$f6
	$f2 = $f4 + $f6
	Floating-Point add (single precision)

	
	FP subtract single
	sub.s $f2,$f4,$f6
	$f2 = $f4 - $f6
	Floating-Point sub (single precision)

	
	FP multiply single
	mul.s $f2,$f4,$f6
	$f2 = $f4 * $f6
	Floating-Point multiply (single precision)

	
	FP divide single
	div.s $f2,$f4,$f6
	$f2 = $f4 / $f6
	Floating-Point divide (single precision)

	
	FP add double
	add.d $f2,$f4,$f6
	$f2 = $f4 + $f6
	Floating-Point add (double precision)

	
	FP.dubtract double
	.dub.d $f2,$f4,$f6
	$f2 = $f4 - $f6
	Floating-Point sub (double precision)

	
	FP multiply double
	mul.d $f2,$f4,$f6
	$f2 = $f4 * $f6
	Floating-Point multiply (double precision)

	
	FP divide double
	div.d $f2,$f4,$f6
	$f2 = $f4 / $f6
	Floating-Point divide (double precision)

	Data transfer
	load word coprocessor 1
	lwc1 $f1,100($2)
	$f1 = Memory[$2+100]
	32-bit data to FP register

	
	store word coprocessor 1
	swc1 $f1,100($2)
	Memory[$2+100] = $f1
	32-bit data to memory

	Arithmetic
	branch on FP true
	bc1t 100
	if (cond == 1) go to PC+4+100
	PC relative branch if FP condition

	
	branch on FP false
	bc1f 100
	if (cond == 0) go to PC+4+100
	PC relative branch if not condition

	
	FP compare single (eq,ne,lt,le,gt,ge)
	c.lt.s $f2,$f4
	if ($f2 < $f4) cond=1; else cond=0
	Floating-point compare less than single precision

	
	FP compare double (eq,ne,lt,le,gt,ge)
	c.lt.d $f2,$f4
	if ($f2 < $f4) cond=1; else cond=0
	Floating-point compare less than double precision

