

Fast Connected Component Labeling Algorithm
Using A Divide and Conquer Technique

by

Jung-Me Park†, Carl G. Looney‡, Hui-Chuan Chen†
Computer Science Dept. Computer Science Dept.

University of Alabama, Tuscaloosa† University of Nevada, Reno‡
Tuscaloosa, AL35487 Reno, NV 89557
jpark@cs.ua.edu, chen@cs.ua.edu, looney@cs.unr.edu

Abstract. We investigate a method to speed up the O(n3) labeling algorithm of Rosenfeld and Pfaltz for segmenting binary
images, which is unduly complex for large images. That algorithm searches line-by-line, top to bottom, to assign a blob label
to each current pixel that is connected to a blob. A large number K of labels arises of which many are equivalent, so the
equivalence must be resolved. This requires a KxK matrix to represent the connectivity and O(K3) operations for resolution,
which is very large for large images. Our approach partitions the binary image into NxN rectangles and perform local
equivalence resolution on each while keeping track of the global equivalence with list pointers to equivalence lists. Such
divide and conquer technique greatly increases the run time speed.

Keywords: binary images, connectivity, labeling algorithm, equivalence resolution, divide and conquer.
__

1. Introduction

 Detection of connected components between pixels in
binary images is a fundamental step in segmentation of an
image objects and regions, or blobs. Each blob is assigned
a unique label to separate it from other blobs. All the
pixels within a blob of spatially connected 1’s are
assigned the same label. It can be used to establish
boundaries of objects, components of regions, and to
count the number of blobs in an image [1]. Its
applications can be found in automatic inspection, optical
character recognition, robotic vision, etc. [2].

 The original algorithm was developed by Rosenfeld
and Pfaltz [3] in 1966. It performs two passes through the
image. In the first pass, the image is processed from left
to right and top to bottom to generate labels for each pixel
and all of the equivalent labels are stored in a pair of
arrays. In the second pass, each label is replaced by the
label assigned to its equivalence class. Several papers
[4,5,6] pointed out the problems in the second pass for
large images because the equivalence arrays can become
unacceptably large [4]. The way in which label
equivalences are resolved can have a dramatic effect upon
the running time of this algorithm.

 Modifications include one proposed by Haralick that
does not use an equivalence array (see [4]) and a small
equivalence table by Lumia, Shapiro, and Zuniga [4] that
is reinitialized for each line. The latter paper makes
comparison runs between these three algorithms. Another

solution uses a bracket table [7] to associate equivalent
groups. Its pushdown stack data structure is implemented
in hardware. Our approach computes the connected
components of a binary image in real time without any
special hardware support. Instead it applies the power and
efficiency of the divide-and-conquer technique. This new
method can compute connectivity in a 1769*1168 image
in about 2, rather than hundreds, of seconds.

2. Connected Components

2. 1 Basic Pixel-Connectivity.

 A pixel p at coordinate (x, y) has four direct neighbors,
N4(p) and four diagonal neighbors, ND(P). Eight-
neighbors, N8(p) of pixel p consist of the union of N4(p)
and ND(P) (see [1] for a basic description).

 To establish connectivity between pixels of 1s in a
binary image, three type of connectivity for pixels p and
q can be considered: i) 4-connectivity – connected if q is
in N4(P); ii) 8-connectivity – connected if q is in N8(p);
iii) m-connectivity- connected if q is in N4(P), or if q is in
ND(P) and N4(p) ∩ N4(q) = ∅ ;

2.2 A Connected Component Labeling Algorithm.

 The labeling algorithm is described below based on 8-
connectivity.

Step 1: Initial labeling. Scan the image pixel by pixel
from left to right and top to bottom. Let p denote the
current pixel in the scanning process and 4-nbr denote
four neighbor pixels in N, NW, NE and W direction of p.
If p is 0, move on to the next scanning position. If p is 1
and all values in 4-nbrs are 0, assign a new label to p. If
only one value in 4-nbrs is not 0, assign its values to p. If
two or more values in 4-nbrs are not 0, assign one of the
labels to p and mark labels in 4-nbrs as equivalent.

Step 2: Resolve equivalences (This is developed in the
following paragraphs).

 The equivalent relations are expressed as a binary
matrix. For example, if label 1 is equivalent to 2, label 3
is equivalent to 4, label 4 is equivalent to 5, and label 1 is
equivalent to 6 then the matrix L is that shown in Figure 1
a). Equivalence relations satisfy reflexivity, symmetry
and transitive [1]. To add reflexivity in matrix L, all main
diagonals are set to 1. To obtain transitive closure the
Floyd-Warshall (F-W) algorithm [1] is used.

 for j = 1 to n
 for i = 1 to n
 if L[i,j] = 1 then
 for k = 1 to n
 L[i,k] = L[i, k] OR L[j,k];

 After applying reflexivity and the F-W algorithm, the
matrix L is that shown in 1 b). This algorithm can be
performed in O(n3) OR operations. After calculating the
transitive closure, each label value is recalculated to
resolve equivalences. The image is scanned again and
each label is replaced by the label assigned to its
equivalence class.

1 2 3 4 5 6

1
2
3
4
5
6

 1 1
1

 1
 1 1
 1

1

1 2 3 4 5 6

1
2
3
4
5
6

1 1 1
1 1 1

 1 1 1
 1 1 1
 1 1 1

1 1 1

a) b)

Figure 1. Equivalence relations in terms of binary matrix.
a) Matrix before applying the F-W algorithm. b) Matrix
after applying reflexivity and the F-W algorithm.

3. A Fast Connected Component Labeling Algorithm

 The main idea in this algorithm is to divide the image
into NxM small regions (we use NxN here for simplicity).
The large equivalence array is the main bottleneck in the
original algorithm, but NxN small equivalence arrays can
be found in greatly reduced time. Figure 2 shows that an
image divided into 3x3 small regions for labeling
independently as described in Section 2.2. Then we
connect each region with its neighbor regions to generate
the actual label within the entire image. We use NxN
pointers Label_List[i] to point to arrays that maintain the
global labels with respect to the entire image. Label_List[
i] points to the array for Region [i] where each array
element is the global label within the entire image and the
index for each array element is the local label within
Region[i]. Memory allocation for each array pointed to by
Label_List[i] can be done dynamically according to the
maximum local label in Region[i]. Figure 3 depicts these
lists. The example of Figure 4 shows that local label 1, 2
and 6 are equivalent and their global label within the
entire image is 8; local label 3, 4, and 5 are equivalent and
their global label is 9. The Total_Index equals 7 at the end
of Region[i-1], which is kept in the list at index 0.

 Our fast labeling algorithm (based on 8-connectivity)
is described below. The other connectivity differs only in
its neighboring checking

The Fast Labeling Algorithm.
Step 1: Divide the given image into NxN small regions
 and set Total_Index = 0

Step 2: For each region i = 1 to NxN

i) apply Step 1 of the original algorithm in Section 2.2;
 ii) allocate memory for the array pointed to by
 Label_List[i] as maximum no. of labels for Region[i];
 iii) use F-W algorithm in Section 2.2 to resolve the
 equivalences within Region[i].
 iv) for j=1 to size of an array for Region[i] do
 Label_List[i][j] = Total_Index + lbl
 // lbl is a label to its equivalence class after equiv.
 resolution (see Figure 4).
 v) Total_index = Total_index + maximum{lbl}
 vi) if (i > 1) then call Merge(i);
 // to update labels in bordering area between regions

Step3: For each region i = 1 to NxN do
 scan image in Region[i] from left to right, top to
 bottom and replace all local label value k with
 Label_List[i][k];

The Merge(i) Function (resolve equivalences of pixels
in bordering area between regions).
Step 1: select first pixel p in Region[i];
 If (label (p) >0) then
 for each pixel q in N8 (p) intersects other regions
 // see figure 5 a)
 if(label(q) > 0) then
 call Resolve_Equivalence(p,q,i);

Step 2: for each pixel p in the first column in Region[i]
 if (label (p) > 0) then
 for each pixel q in N8 (p) intersects Region [i-1]
 // see Figure 5 –b)
 if (label (q) is > 0) then
 call Resolve_Equivalence(p,q,i);

Step 3: for each pixel p in the first row in Region[i]
 if label(p) > 0 then
 for each pixel q in N8 (p) intersects Region [i-N]
 // see Figure 5-c)
 if (label (q) is > 0) then
 call Resolve_Equivalence(p,q,i);

The Resolve_Equivalence(p,q,i) Function.
 Step1: Index1 = Label_List[region no. of q][label(q)];
 Index2 = Label_list[i][label(p)] ;
 if(Index1 not equal to Index2) then
 do Step 2.

Step2: Small_Lbl = min{index1,index2};
 Large_Lbl = max{index1, index2};
 for k=1 to i do
 for j=1 to size of an array for Region[k].
 if (Label_List[k][j] > Larege_Lbl) then
 Label_List[k][j] = Label_List[k][j] –1;
 else if (Label_List[k][j] = Large_Lbl) then
 Label_List[k][j] = Small_Lbl;
 Total_Index = Total_Index –1;

4. Experiment Results

 We tested the new algorithm with image size of
2008K (e.g., 1760*1168 pixels). The results of the
processing time with the different sizes of N are listed in
Table1. Figure 6 shows the CPU time as a function of the

R e g io n [1] R e g io n [2] R e g io n [3]

R e g io n [4] R e g io n [5] R e g io n [6]

R e g io n [6] R e g io n [7] R e g io n [8]

 Figure 2. Division of original image into 3*3 regions.

different sizes for N. There is no division in the image
when N=1 and the algorithm is the same as the original
one developed by Rosenfeld and Pfaltz. With a Pentium
500 MHZ, 128 MB RAM computer, it is not feasible to
calculate the connected component in real time when
N=1, 2 or 3. Our new algorithm computes connected
components within 2 seconds for an image size of 2008k
with N = 25. Table 2 shows the comparisons with other
algorithms with different size images. According to
Lumia, Shapiro, and Zuniga[4] an image size of 973K
can be calculated in 78 seconds with their method. With
the fast connected component labeling algorithm the
image size of 973k can be calculated within 0.82 seconds.

 The next step is to determine how we can choose the
proper size of N? Our experimental results suggest that N
is optimal when the regions have 30*30 to 60*60 pixels.
Small size of sub-images always guarantees small size of
equivalence arrays. The fast connected components
algorithm presented in this paper is superior to any other
serial algorithms that we have found and makes the
computations without any special hardware support.

1

2

.

.

.

.

N*N

 Region [1]

 Region [2]

Region[i]

Region[N*N]

.

.

. . . .

1 2 (index : local label before equiv. resolution in Region[i])

 15 10 27 10 22 28 22
 (elemnet : global label in the entire image)

Figure3. The Label_List structure.

0 1 2 3 4 5 6

Total labels before
Region[i] reached

local labels
before equiv.
resolution in
Region[i].

 7{Label_ List[i][0]}+ 2{label to its

equiv. class after equiv. resolution
in Region[i]: local lable 1,2,6 be
assigned 1; 3,4,5 be assigned 2}

Label_List[i] =

7 8 8 9 9 9 8

 Figure 4. The Label_List[i] example.

R e g io n [i -N -1]
R e g io n [i -N]

R e g io n [i -1] R e g io n [i]

R e g io n [i -N -1] R e g io n [i -N]

R e g io n [i -1] R e g io n [i]

R e g io n [i -N -1]

R e g io n [i -1]

R e g io n [i -N]

 R e g io n [i]

p
p p

a) b) c)

: N 8 (p) in te rs e c ts o th e r
 re g io ns .

: N 8 (p) in te rs e c ts R e g io n [i -1] : N 8 (p) in te rs e c ts R e g ion [i -N]

Figure 5. Merge taken place in three ways at Region[i]. a) Merge at the first pixel in Region[i] b) Merge at pixels in the first
column in Region[i] and the last column in region[i-1] c) Merge at pixels in the first row in Region[i] and the last row in
Region[i-N].

Table 1. CPU time for the image size 1760x1168.

N 4 5 1 0 1 5 2 0 2 5

 C P U 2 7 4 . 5 7 1 6 0 . 2 2 1 2 . 4 7 4 . 0 1 2 . 7 5 2 . 4 7
 (s e c s .)

0

50

100

150

200

250

300

0 5 10 15 20 25 30

N (Image is divided into NxN regions)

C
PU

 ti
m

e(
se

c.
)

 Figure 6. CPU time as a function of N.

Table 2. Comparison with other algorithms

Rosenfield[3] 1.32 113.64 ------- ------

Harlick[4]* 0.55 3.24 76.57 331.75

Lumia et al.[4] * 0.22 3.79 78.43 358.39

Fast labeling 0.05 0.11 0.82 2.47
 (N=10) (N=10) (N=20) (N=25)

Image size 212K 321K 973k 2008k
 CPU time(sec)

*Labels from these methods are not consecutive
numbers, processing time for this step is included for
fair comparison.

5. References

[1] Gonzalez, R. C., Woods, R.E., Digital Image

Processing, Addison Wesley, 1992.
[2] Ronsen, C., Denijver, P.A., “Connected components

in Binary Images:The Detection Problem,” Research
Studies Press, 1984.

[3] Rosenfeld, A., Pfaltz, J.L., “Sequential Operations in
digital Processing,” JACM, 13, 471-494,1966.

[4] Lumia, R., Shapiro, L., Zuniga, O., “A New
Connected Components Algorithm for Virtual
Memory Computers,” Computer Vision, Graphics,
and Image Processing, 22,1983, 287-300.

[5] Lumia R., “A New Three-dimensional connected
components Algorithm,” Computer Vision, Graphics,
and Image Processing, 23, 1983, 207-217.

[6] Manohar, M, Ramapriyan, H.K., “Connected
Component Labeling of Binary Image on a Mesh
connected Massively Parallel Processor,” Vision,
Computer Graphics and Image Processing, 45, 133-
149, 1989.

[7] Yang, X. D., “An Improved Algorithm for Labeling
Connected Components in a Binary Image,” TR 89-
981, march, 1989.

