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Abstract. We investigate a method to speed up the O(n3) labeling algorithm of Rosenfeld and Pfaltz for segmenting binary 
images, which is unduly complex for large images. That algorithm searches line-by-line, top to bottom, to assign a blob label 
to each current pixel that is connected to a blob. A large number K of labels arises of which many are equivalent, so the 
equivalence must be resolved. This requires a KxK matrix to represent the connectivity and O(K3) operations for resolution, 
which is very large for large images. Our approach partitions the binary image into NxN rectangles and perform local 
equivalence resolution on each while keeping track of the global equivalence with list pointers to equivalence lists. Such 
divide and conquer technique greatly increases the run time speed.       
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1. Introduction 
 
     Detection of connected components between pixels in 
binary images is a fundamental step in segmentation of an 
image objects and regions, or blobs. Each blob is assigned 
a unique label to separate it from other blobs. All the 
pixels within a blob of spatially connected 1’s are 
assigned the same label. It can be used to establish 
boundaries of objects, components of regions, and to 
count the number of blobs in an image [1]. Its 
applications can be found in automatic inspection, optical 
character recognition, robotic vision, etc. [2]. 
 
     The original algorithm was developed by Rosenfeld 
and Pfaltz [3] in 1966. It performs two passes through the 
image. In the first pass, the image is processed from left 
to right and top to bottom to generate labels for each pixel 
and all of the equivalent labels are stored in a pair of 
arrays. In the second pass, each label is replaced by the 
label assigned to its equivalence class. Several papers 
[4,5,6] pointed out the problems in the second pass for 
large images because the equivalence arrays can become 
unacceptably large [4]. The way in which label 
equivalences are resolved can have a dramatic effect upon 
the running time of this algorithm. 
 
     Modifications include one proposed by Haralick that 
does not use an equivalence array (see [4]) and a small 
equivalence table by Lumia, Shapiro, and Zuniga [4] that 
is reinitialized for each line. The latter paper makes 
comparison runs between these three algorithms. Another 

solution uses a bracket table [7] to associate equivalent 
groups. Its pushdown stack data structure is implemented 
in hardware. Our approach computes the connected 
components of a binary image in real time without any 
special hardware support. Instead it applies the power and 
efficiency of the divide-and-conquer technique. This new 
method can compute connectivity in a 1769*1168 image 
in about 2, rather than hundreds, of seconds. 
 
2. Connected Components 
 
2. 1 Basic Pixel-Connectivity.  
 
     A pixel p at coordinate (x, y) has four direct neighbors, 
N4(p) and four diagonal neighbors, ND(P). Eight- 
neighbors, N8(p) of pixel p consist of the union of N4(p) 
and  ND(P) (see [1] for a basic description).   
 
       To establish connectivity between pixels of 1s in a 
binary image, three type of connectivity for pixels p and  
q can be considered:  i) 4-connectivity – connected if q is 
in N4(P); ii) 8-connectivity – connected if q is in N8(p);  
iii) m-connectivity- connected if  q is in N4(P), or if q is in 
ND(P) and  N4(p) ∩ N4(q) = ∅ ; 
 
 
2.2 A Connected Component Labeling Algorithm.  
 
     The labeling algorithm is described below based on 8-
connectivity.  
 



 

Step 1: Initial labeling. Scan the image pixel by pixel 
from left to right and top to bottom. Let p denote the 
current pixel in the scanning process and 4-nbr denote 
four neighbor pixels in N, NW, NE and W direction of p. 
If p is 0, move on to the next scanning position. If p is 1 
and all values in 4-nbrs are 0, assign a new label to p. If 
only one value in 4-nbrs is not 0, assign its values to p. If 
two or more values in 4-nbrs are not 0, assign one of the 
labels to p and mark labels in 4-nbrs as equivalent.    
 
Step 2: Resolve equivalences (This is developed in the 
following paragraphs).  
 
     The equivalent relations are expressed as a binary 
matrix. For example, if label 1 is equivalent to 2, label 3 
is equivalent to 4, label 4 is equivalent to 5, and label 1 is 
equivalent to 6 then the matrix L is that shown in Figure 1 
a).  Equivalence relations satisfy reflexivity, symmetry 
and transitive [1].  To add reflexivity in matrix L, all main 
diagonals are set to 1. To obtain transitive closure the 
Floyd-Warshall (F-W) algorithm [1] is used. 
 
 for j  = 1  to  n 
         for i = 1 to n 
               if   L[i,j] = 1 then 
                          for k = 1 to n 
                                  L[i,k] = L[i, k] OR L[j,k]; 
 
       After applying reflexivity and the F-W algorithm, the 
matrix L is that shown in 1 b). This algorithm can be 
performed in O(n3) OR operations. After calculating the 
transitive closure, each label value is recalculated to 
resolve equivalences. The image is scanned again and 
each label is replaced by the label assigned to its 
equivalence class. 
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Figure 1. Equivalence relations in terms of binary matrix. 
a) Matrix before applying the F-W algorithm. b) Matrix 
after applying reflexivity and the F-W algorithm.   
  
 
 
 
 
 

3. A Fast Connected Component Labeling Algorithm 
 
       The main idea in this algorithm is to divide the image 
into NxM small regions (we use NxN here for simplicity). 
The large equivalence array is the main bottleneck in the 
original algorithm, but NxN small equivalence arrays can 
be found in greatly reduced time. Figure 2 shows that an 
image divided into 3x3 small regions for labeling 
independently as described in Section 2.2. Then we 
connect each region with its neighbor regions to generate 
the actual label within the entire image. We use NxN 
pointers Label_List[i] to point to arrays that maintain the 
global labels with respect to the entire image. Label_List[ 
i] points to the array for Region [i] where each array 
element is the global label within the entire image and the 
index for each array element is the local label within 
Region[i]. Memory allocation for each array pointed to by 
Label_List[i] can be done dynamically according to the 
maximum local label in Region[i]. Figure 3 depicts these 
lists. The example of Figure 4 shows that local label 1, 2 
and 6 are equivalent and their global label within the 
entire image is 8; local label 3, 4, and 5 are equivalent and 
their global label is 9. The Total_Index equals 7 at the end 
of Region[i-1], which is kept in the list at index 0.  
 
     Our fast labeling algorithm (based on 8-connectivity) 
is described below. The other connectivity differs only in 
its neighboring checking 
 
The Fast Labeling Algorithm. 
Step 1: Divide the given image into NxN small regions  
             and set Total_Index = 0 
 
Step 2: For each region i = 1 to NxN  

i) apply  Step 1 of the original algorithm in Section 2.2; 
   ii) allocate memory for the array pointed to by                    
       Label_List[i] as maximum no. of labels for Region[i]; 
   iii) use F-W algorithm in Section 2.2 to resolve the  
        equivalences within Region[i].  
   iv) for  j=1 to size of an array for Region[i] do  
              Label_List[i][j] =   Total_Index + lbl      
           // lbl is a label to its equivalence class after equiv.  
              resolution ( see Figure 4). 
   v) Total_index  = Total_index + maximum{lbl} 
   vi) if ( i > 1) then call Merge( i );  
        // to update labels in bordering area between regions 
 
Step3:  For each region i = 1 to NxN do 
            scan image in Region[i] from left to right, top to      
            bottom and replace all local label value k with  
            Label_List[i][k]; 
 
 
           
 
 
 



 

The Merge( i ) Function ( resolve equivalences of pixels 
in bordering area between regions). 
Step 1: select first pixel p in Region[i]; 
            If (label (p) >0) then 
               for each pixel q in N8 (p) intersects other regions  
                       // see figure 5 a) 
                      if(label(q) > 0 )  then          
                             call Resolve_Equivalence(p,q,i);  
 
Step 2: for each pixel p in the first column in Region[i]  
           if (label (p) > 0 ) then 
                for each pixel q in N8 (p) intersects Region [i-1]   
                     // see Figure 5 –b)   
                     if (label (q) is > 0) then 
                           call Resolve_Equivalence(p,q,i);  
                              
Step 3: for each pixel p in the first row in Region[i]   
             if  label(p) > 0 then 
                for each pixel q in N8 (p) intersects Region [i-N]  
                   // see Figure 5-c)  
                    if (label (q) is > 0) then 
                           call Resolve_Equivalence(p,q,i); 
    
The Resolve_Equivalence(p,q,i ) Function.  
 Step1: Index1 = Label_List[region no. of q ][label(q)];  
            Index2 = Label_list[ i][label(p)] ; 
            if( Index1 not equal to Index2 ) then 
                do Step 2. 
             
Step2:  Small_Lbl = min{index1,index2}; 
            Large_Lbl = max{index1, index2}; 
            for k=1 to i do  
                 for j=1 to size of an array for Region[k]. 
                if ( Label_List[k][j] > Larege_Lbl) then 
                               Label_List[k][j] = Label_List[k][j] –1; 
                else if (Label_List[k][j] = Large_Lbl) then  
                              Label_List[k][j] = Small_Lbl; 
           Total_Index = Total_Index –1; 
 
 
4. Experiment Results            
 
       We tested the new algorithm with image size of 
2008K (e.g., 1760*1168 pixels). The results of the 
processing time with the different sizes of N are listed in 
Table1. Figure 6 shows the CPU time as a function of the 
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 Figure 2. Division of original image into 3*3 regions. 

different sizes for N. There is no division in the image 
when N=1 and the algorithm is the same as the original 
one developed by Rosenfeld and Pfaltz. With a Pentium 
500 MHZ, 128 MB RAM computer, it is not feasible to 
calculate the connected component in real time when 
N=1, 2 or 3. Our new algorithm computes connected 
components within 2 seconds for an image size of 2008k 
with N = 25. Table 2 shows the comparisons with other 
algorithms with different size images. According to 
Lumia, Shapiro, and Zuniga[4]  an image size of 973K 
can be calculated in 78 seconds with their method. With 
the fast connected component labeling algorithm the 
image size of 973k can be calculated within 0.82 seconds.    
 
     The next step is to determine how we can choose the 
proper size of N? Our experimental results suggest that N 
is optimal when the regions have 30*30 to 60*60 pixels. 
Small size of sub-images always guarantees small size of 
equivalence arrays. The fast connected components 
algorithm presented in this paper is superior to any other 
serial algorithms that we have found and makes the 
computations without any special hardware support. 
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Figure3. The Label_List structure. 
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 7{Label_ List[i][0]}+ 2{label to its 

equiv. class after equiv. resolution 
in Region[ i ]:  local lable 1,2,6 be 
assigned 1;   3,4,5 be assigned 2} 
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 Figure 4. The Label_List[i] example. 
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Figure 5. Merge taken place in three ways at Region[ i ]. a) Merge at the first pixel in Region[i] b) Merge at pixels in the first 
column in Region[i] and the last column in region[i-1] c) Merge at pixels in the first row in Region[i] and the last row in 
Region[i-N].

 
 
 

Table 1. CPU time for the image size 1760x1168. 
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 Figure 6. CPU time as a function of N. 
 
 

Table 2. Comparison with other algorithms 

Rosenfield[3]             1.32          113.64         -------         ------ 

Harlick[4]*                 0.55             3.24         76.57         331.75 

Lumia et al.[4] *         0.22             3.79        78.43         358.39  

Fast labeling             0.05              0.11           0.82           2.47 
                               (N=10)        (N=10)       (N=20)      (N=25)     

Image size               212K          321K           973k          2008k 
          CPU time(sec) 

 
*Labels from these methods are not consecutive 
numbers, processing time for this step is included for 
fair comparison. 
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